dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Autonoma Barcelona
dc.date.accessioned2014-05-20T13:23:33Z
dc.date.available2014-05-20T13:23:33Z
dc.date.created2014-05-20T13:23:33Z
dc.date.issued2009-02-01
dc.identifierPhysica D-nonlinear Phenomena. Amsterdam: Elsevier B.V., v. 238, n. 3, p. 241-252, 2009.
dc.identifier0167-2789
dc.identifierhttp://hdl.handle.net/11449/7116
dc.identifier10.1016/j.physd.2008.10.011
dc.identifierWOS:000263401900002
dc.identifier3757225669056317
dc.description.abstractThe Rikitake system is a three dimensional vector field obtained experimentally from a two-disk dynamo apparatus, which models the geomagnetic field and is used to explain the known irregular switch in its polarity. The system has a 3-dimensional Lorenz type chaotic attractor around its two singular points. However this attractor is not bounded by any ellipsoidal surface as in the Lorenz attractor. In this paper, by using the Poincare compactification for polynomial vector fields in R(3) we study the dynamics of the Rikitake system at infinity, showing that there are orbits which escape to, or come from, infinity, instead of going towards the attractor. Moreover we study, for particular values of the parameters, the flow over two invariant planes, and describe the global flow of the system when it has two independent first integrals and thus is completely integrable. The global analysis performed, allows us to give a numerical description of the creation of Rikitake attractor. (c) 2008 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationPhysica D: Nonlinear Phenomena
dc.relation1.960
dc.relation0,861
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectRikitake attractor
dc.subjectGeodynamo
dc.subjectUnbounded orbits
dc.subjectPoincare compactification
dc.subjectStrange attractor creation
dc.subjectLorenz attractor
dc.titleGlobal dynamics of the Rikitake system
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución