Relations of k-th derivative of dirac delta in hypercone with ultrahyperbolic operator
Relations of k-th derivative of dirac delta in hypercone with ultrahyperbolic operator
dc.creator | Aguirre T., Manuel A. | |
dc.date.accessioned | 2015-05-19T18:14:26Z | |
dc.date.accessioned | 2019-04-25T15:04:58Z | |
dc.date.available | 2015-05-19T18:14:26Z | |
dc.date.available | 2019-04-25T15:04:58Z | |
dc.date.created | 2015-05-19T18:14:26Z | |
dc.date.issued | 2009-02-18 00:00:00 | |
dc.identifier | http://revistas.ucr.ac.cr/index.php/matematica/article/view/170 | |
dc.identifier | ||
dc.identifier | http://hdl.handle.net/10669/12807 | |
dc.identifier | 10.15517/rmta.v6i2.170 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/2378663 | |
dc.description.abstract | In this paper we prove that the generalized functions d (k) (P+) - d (k) (P), d (k) (P-)-d (k) (-P) and d 1 (k) (P)-d 2 (k) (P)d are concentrated in the vertex of the cone P=0 and we find their relationship with the ultrahyperbolic operator iterated (k +1 -n/2 ) times under condition k ³ n/2-1Keywords: distributions, generalized functions, distributions spaces, properties of distributions. | |
dc.description.abstract | En este trabajo se prueba que las funciones generalizadas d (k) (P+) - d (k) (P), d (k) (P-)-d (k) (-P) and d 1 (k) (P)-d 2 (k) (P)destán concentradas en el vértice del cono P=0 y encontramos sus relaciones con el operador ultrahperbólico iterado (k +1 -n/2 ) veces bajo la condición k ³ n/2-1.Palabras clave: Distribuciones, funciones generalizadas, espacios de distribuciones, propiedades de distribuciones. | |
dc.language | es | |
dc.relation | Revista de Matemática: Teoría y Aplicaciones Vol. 6 Núm. 2 2009 | |
dc.title | Relations of k-th derivative of dirac delta in hypercone with ultrahyperbolic operator | |
dc.title | Relations of k-th derivative of dirac delta in hypercone with ultrahyperbolic operator | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas |