dc.contributoreocana@imca.edu.pe
dc.creatorBueno, Orestes
dc.creatorOcaña, Eladio
dc.creatorCotrina, John
dc.creatorOcaña, Eladio
dc.creatorCotrina, John
dc.creatorBueno, Orestes
dc.date2017-08-14T16:19:30Z
dc.date2017-08-14T16:19:30Z
dc.date2014-03
dc.date.accessioned2019-04-24T22:41:28Z
dc.date.available2019-04-24T22:41:28Z
dc.identifier0233-1934
dc.identifierhttp://cybertesis.uni.edu.pe/handle/uni/4146
dc.identifierOptimization
dc.identifier10.1080/02331934.2014.891031
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2345892
dc.descriptionWe prove that the notions of -cyclic quasimonotonicity and -cyclic monotonicity are equivalent for affine maps defined on Banach spaces. First this is done in a finite dimensional space by using the index of asymmetry for matrices defined by J.-P. Crouzeix and C. Gutan. Then this equivalence is extended to general Banach spaces.
dc.formatapplication/pdf
dc.languageeng
dc.publisherTaylor and Francis Ltd.
dc.relationhttp://dx.doi.org/10.1080/02331934.2014.891031
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.sourceUniversidad Nacional de Ingeniería
dc.sourceRepositorio Institucional - UNI
dc.subjectAffine multivalued maps
dc.subjectPositive semidefinite matrices
dc.subjectCyclic monotonicity
dc.subjectMonotonicity+
dc.subjectParamonotonicity
dc.subjectCyclic quasimonotonicity
dc.subjectIndex of asymmetry
dc.titleEquivalence between p-cyclic quasimonotonicity and p-cyclic monotonicity of affine maps
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución