dc.contributorSchroeder, Rolf
dc.creatorArohuanca Lagos, Ferdinand Gunard
dc.creatorArohuanca Lagos, Ferdinand Gunard
dc.date2016-09-21T01:20:02Z
dc.date2016-09-21T01:20:02Z
dc.date1998
dc.date.accessioned2019-04-24T22:36:38Z
dc.date.available2019-04-24T22:36:38Z
dc.identifierhttp://cybertesis.uni.edu.pe/handle/uni/2197
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2344009
dc.descriptionEl objetivo principal de este trabajo es construir integradores que solucionen numéricamente ecuaciones diferenciales ordinarias con problemas de valor inicial. En dichos integradores numéricos, basados en las fórmulas multipaso {ej. fórmulas de Adams, BDF, etc.), se utiliza la técnica de paso variable, la cual permite una mayor precisión. Cabe resaltar que estos métodos son usados cuando la función / de la ecuación diferencial y' — f(x,y) es dada de un modo más complicado, pues es menor el costo computacional comparado con otros métodos {ej. métodos de un paso). El Capítulo 1 considera el caso de los métodos multipaso de longitud de paso constante, obteniendo y analizando algunos resultados con la finalidad de extenderlos al caso de paso variable. En el capítulo 2 se desarrollan las fórmulas de paso variable mediante las diferencias divididas de Newton, estudiando las condiciones necesarias y suficientes para conseguir estabilidad y convergencia. El Capítulo 3 estudia una equivalencia de los métodos multipaso implícitos, formulada por Nordsieck (1962), facilitando considerablemente el cambio de la 1ongitud de paso. Finalmente el Capítulo 4 está dedicado a la implementación de las fórmulas estudiadas en los Capítulos 2 y 3, y la obtención de algunos resultados numéricos, poniéndose de manifiesto la importancia de estos métodos. Mencionemos que diversos resultados fueron tomados tanto de Hairer, Norsett & Wanner (1993) y Bulirs h &; Stoer (1993), así como de algunos artículos los cuales son citados oportunamente. En cuanto a los resultados numéricos, estos fueron obtenidos de algunos integradores de la biblioteca Netlib, accesible vía Internet. Deseo agradecer a todas aquellas personas que ayudaron de una u otra manera en la elaboración de este trabajo, en especial al Dr. Rolf Schroeder por sus sugerencias, consejos y paciencia; al centro de cómputo de Ciencias de la UNI por permitir el uso de sus instalaciones, y a mi familia por su apoyo en toda circunstancia.
dc.descriptionTesis
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Nacional de Ingeniería
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceUniversidad Nacional de Ingeniería
dc.sourceRepositorio Institucional - UNI
dc.subjectAnálisis numérico
dc.subjectEcuaciones diferenciales ordinarias
dc.subjectIntegración numérica
dc.subjectMatemática
dc.titleMétodos multipaso de longitud de paso variable para la solución numérica de ecuaciones diferenciales ordinarias con problema de valor inicial
dc.typeTesis


Este ítem pertenece a la siguiente institución