Tesis
Pattern-based clustering using unsupervised decision trees
Autor
ANDRES EDUARDO GUTIERREZ RODRÍGUEZ
Institución
Resumen
In clustering, providing an explanation of the results is an important task.
Pattern-based clustering algorithms provide, in addition to the list of objects
belonging to each cluster, an explanation of the results in terms of a set of
patterns that describe the objects grouped in each cluster. It makes these
algorithms very attractive from the practical point of view; however, patternbased
clustering algorithms commonly have a high computational cost in the
clustering stage. Moreover, the most recent algorithms proposed within this
approach, extract patterns from numerical datasets by applying an a priori
discretization process, which may cause information loss. In this thesis, we
propose new algorithms for extracting only a subset of patterns useful for
clustering, from a collection of diverse unsupervised decision trees induced
from a dataset. Additionally, we propose a new clustering algorithm based
on these patterns.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Material de empaque para biofiltración con base en poliuretano modificado con almidón, metodos para la manufactura del mismo y sistema de biofiltración
OLGA BRIGIDA GUTIERREZ ACOSTA; VLADIMIR ALONSO ESCOBAR BARRIOS; SONIA LORENA ARRIAGA GARCIA