dc.creatorHerrero, Álvaro
dc.creatorPinzón Trejos, Cristian
dc.creatorCorchado, Emilio
dc.creatorBajo, Javier
dc.date.accessioned2018-06-07T18:21:37Z
dc.date.accessioned2018-06-07T18:21:37Z
dc.date.available2018-06-07T18:21:37Z
dc.date.available2018-06-07T18:21:37Z
dc.date.created2018-06-07T18:21:37Z
dc.date.created2018-06-07T18:21:37Z
dc.date.issued2010-07-02
dc.date.issued2010-07-02
dc.identifierhttp://ridda2.utp.ac.pa/handle/123456789/4883
dc.identifierhttp://ridda2.utp.ac.pa/handle/123456789/4883
dc.description.abstractThis paper presents an improvement of the SCMAS architecture aimed at securing SQL-run databases. The main goal of such architecture is the detection and prevention of SQL injection attacks. The improvement consists in the incorporation of unsupervised projection models for the visual inspection of SQL traffic. Through the obtained projections, SQL injection queries can be identified and subsequent actions can be taken. The proposed approach has been tested on a real dataset, and the obtained results are shown.
dc.languageeng
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMultiagent System for Security
dc.subjectNeural Projection Models
dc.subjectUnsupervised Learning
dc.subjectDatabase Security
dc.subjectSQL Injection Attacks
dc.subjectMultiagent System for Security
dc.subjectNeural Projection Models
dc.subjectUnsupervised Learning
dc.subjectDatabase Security
dc.subjectSQL Injection Attacks
dc.titleUnsupervised Visualization of SQL Attacks by Means of the SCMAS Architecture
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución