dc.creatorPlastino, Ángel Luis
dc.creatorRocca, Mario Carlos
dc.date.accessioned2017-08-31T21:41:09Z
dc.date.accessioned2018-11-06T16:20:41Z
dc.date.available2017-08-31T21:41:09Z
dc.date.available2018-11-06T16:20:41Z
dc.date.created2017-08-31T21:41:09Z
dc.date.issued2013-05
dc.identifierPlastino, Ángel Luis; Rocca, Mario Carlos; Reflections on the q-Fourier transform and the q-Gaussian function; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 18; 5-2013; 3952-3961
dc.identifier0378-4371
dc.identifierhttp://hdl.handle.net/11336/23412
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1907257
dc.description.abstractThe standard q-Fourier Transform (qFT) of a constant diverges, which begs for a better treatment. In addition, Hilhorst has conclusively proved that the ordinary qFT is not of a one-to-one character for an infinite set of functions [H.J. Hilhorst, J. Stat. Mech. (2010) P10023]. Generalizing the ordinary qFT analyzed in [S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76 (2008) 307], we appeal here to a complex q-Fourier transform, and show that the problems above mentioned are overcome.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113003609
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2013.04.047
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectq-Fourier transform
dc.subjectTempered ultradistributions
dc.subjectComplex-plane generalization
dc.subjectOne-to-one character
dc.titleReflections on the q-Fourier transform and the q-Gaussian function
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución