dc.creatorDimant, Veronica Isabel
dc.creatorFernández Unzueta, Maite
dc.date.accessioned2018-04-17T18:48:52Z
dc.date.accessioned2018-11-06T16:17:53Z
dc.date.available2018-04-17T18:48:52Z
dc.date.available2018-11-06T16:17:53Z
dc.date.created2018-04-17T18:48:52Z
dc.date.issued2015-12
dc.identifierDimant, Veronica Isabel; Fernández Unzueta, Maite; Biduals of tensor products in operator spaces; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 230; 2; 12-2015; 165-185
dc.identifier0039-3223
dc.identifierhttp://hdl.handle.net/11336/42352
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1906709
dc.description.abstractWe study whether the operator space V ∗∗ α ⊗ W∗∗ can be identified with a subspace of the bidual space (V α ⊗ W) ∗∗, for a given operator space tensor norm. We prove that this can be done if α is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can be weakened.
dc.languageeng
dc.publisherPolish Academy of Sciences. Institute of Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8292-1-2016
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/sm8292-1-2016
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectOperator spaces
dc.subjectTensor products
dc.subjectBilinear mappings
dc.titleBiduals of tensor products in operator spaces
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución