dc.creatorAndruchow, Esteban
dc.date.accessioned2017-01-30T19:39:16Z
dc.date.accessioned2018-11-06T16:17:41Z
dc.date.available2017-01-30T19:39:16Z
dc.date.available2018-11-06T16:17:41Z
dc.date.created2017-01-30T19:39:16Z
dc.date.issued2014-11
dc.identifierAndruchow, Esteban; Operators which are the difference of two projections; Elsevier; Journal Of Mathematical Analysis And Applications; 420; 2; 11-2014; 1634-1653
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11336/12180
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1906662
dc.description.abstractWe study the set D of differences D={A=P−Q:P,Q∈P}, where P denotes the set of orthogonal projections in H. We describe models and factorizations for elements in D, which are related to the geometry of P. The study of D throws new light on the geodesic structure of P (we show that two projections in generic position are joined by a unique minimal geodesic). The topology of D is examined, particularly its connected components are studied. Also we study the subsets Dc⊂DF, where Dc are the compact elements in D, and DF are the differences A=P−Q such that the pair (P,Q) is a Fredholm pair ((P,Q) is a Fredholm pair if QP|R(P):R(P)→R(Q) is a Fredholm operator)
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X14005691
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2014.06.022
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectProjection
dc.subjectSelfadjoint operator
dc.subjectSymmetry
dc.titleOperators which are the difference of two projections
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución