dc.creatorBroitman, E.
dc.creatorFurlan, A.
dc.creatorGueorguiev, G.K.
dc.creatorCzigány, Zs.
dc.creatorTarditi, Ana Maria
dc.creatorGellman, Andrew J
dc.creatorStafström, S.
dc.creatorHultman, L.
dc.date.accessioned2018-08-24T18:04:11Z
dc.date.accessioned2018-11-06T16:13:53Z
dc.date.available2018-08-24T18:04:11Z
dc.date.available2018-11-06T16:13:53Z
dc.date.created2018-08-24T18:04:11Z
dc.date.issued2009-12
dc.identifierBroitman, E.; Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Tarditi, Ana Maria; et al.; Water adsorption on phosphorous-carbide thin films; Elsevier Science Sa; Surface and Coatings Technology; 204; 6-7; 12-2009; 1035-1039
dc.identifier0257-8972
dc.identifierhttp://hdl.handle.net/11336/57036
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1905844
dc.description.abstractAmorphous phosphorous-carbide films have been considered as a new tribological coating material with unique electrical properties. However, such CPx films have not found practical use until now because they tend to oxidize/hydrolyze rapidly when in contact with air. Recently, we demonstrated that CPx thin films with a fullerene-like structure can be deposited by magnetron sputtering, whereby the structural incorporation of P atoms induces the formation of strongly bent and inter-linked graphene planes. Here, we compare the uptake of water in fullerene-like phosphorous-carbide (FL-CPx) thin films with that in amorphous phosphorous-carbide (a-CPx), and amorphous carbon (a-C) thin films. Films of each material were deposited on quartz crystal substrates by reactive DC magnetron sputtering to a thickness in the range 100-300 nm. The film microstructure was characterized by X-ray photoelectron spectroscopy, and high resolution transmission electron microscopy. A quartz crystal microbalance placed in a vacuum chamber was used to measure their water adsorption. Measurements indicate that FL-CPx films adsorbed less water than the a-CPx and a-C ones. To provide additional insight into the atomic structure of defects in the FL-CPx and a-CPx compounds, we performed first-principles calculations within the framework of density functional theory. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CPx than for the amorphous films. Thus, the modeling confirms the experimental results that dangling bonds are less likely in FL-CPx than in a-CPx and a-C films.
dc.languageeng
dc.publisherElsevier Science Sa
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.surfcoat.2009.06.003
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectPhosphorous carbide
dc.subjectDangling bonds
dc.subjectWater adsorption
dc.subjectDensity functional theory
dc.titleWater adsorption on phosphorous-carbide thin films
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución