Artículos de revistas
Paths of inner-related functions
Fecha
2012-05Registro en:
Nicolau, Artur; Suarez, Fernando Daniel; Paths of inner-related functions; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 9; 5-2012; 3749-3774
0022-1236
Autor
Nicolau, Artur
Suarez, Fernando Daniel
Resumen
We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras.