dc.creatorAndruchow, Esteban
dc.creatorChiumiento, Eduardo Hernan
dc.creatorDi Iorio y Lucero, María Eugenia
dc.date.accessioned2017-06-26T20:39:11Z
dc.date.accessioned2018-11-06T16:12:56Z
dc.date.available2017-06-26T20:39:11Z
dc.date.available2018-11-06T16:12:56Z
dc.date.created2017-06-26T20:39:11Z
dc.date.issued2015-12
dc.identifierAndruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; Proper subspaces and compatibility; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 231; 3; 12-2015; 195-218
dc.identifier0039-3223
dc.identifierhttp://hdl.handle.net/11336/18930
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1905671
dc.description.abstractLet E be a Banach space contained in a Hilbert space L. Assume thatthe inclusion is continuous with dense range. Following the terminology of Gohberg andZambicki, we say that a bounded operator on E is a proper operator if it admits anadjoint with respect to the inner product of L. A proper operator which is self-adjointwith respect to the inner product of L is called symmetrizable. By a proper subspace Swe mean a closed subspace of E which is the range of a proper projection. Furthermore,if there exists a symmetrizable projection onto S, then S belongs to a well-known class ofsubspaces called compatible subspaces. We nd equivalent conditions to describe propersubspaces. Then we prove a necessary and sucient condition for a proper subspace tobe compatible. The existence of non-compatible proper subspaces is related to spectralproperties of symmetrizable operators. Each proper subspace S has a supplement T whichis also a proper subspace.We give a characterization of the compatibility of both subspacesS and T . Several examples are provided that illustrate dierent situations between properand compatible subspaces
dc.languageeng
dc.publisherPolish Acad Sciences Inst Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.4064/sm8225-2-2016
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/231/3/91441/proper-subspaces-and-compatibility
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.00596
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPROJECTION
dc.subjectCOMPATIBLE SUBSPACE
dc.subjectPROPER OPERATOR
dc.subjectSPECTRUM
dc.titleProper subspaces and compatibility
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución