dc.creator | Andruchow, Esteban | |
dc.creator | Chiumiento, Eduardo Hernan | |
dc.creator | Di Iorio y Lucero, María Eugenia | |
dc.date.accessioned | 2017-06-26T20:39:11Z | |
dc.date.accessioned | 2018-11-06T16:12:56Z | |
dc.date.available | 2017-06-26T20:39:11Z | |
dc.date.available | 2018-11-06T16:12:56Z | |
dc.date.created | 2017-06-26T20:39:11Z | |
dc.date.issued | 2015-12 | |
dc.identifier | Andruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; Proper subspaces and compatibility; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 231; 3; 12-2015; 195-218 | |
dc.identifier | 0039-3223 | |
dc.identifier | http://hdl.handle.net/11336/18930 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1905671 | |
dc.description.abstract | Let E be a Banach space contained in a Hilbert space L. Assume thatthe inclusion is continuous with dense range. Following the terminology of Gohberg andZambicki, we say that a bounded operator on E is a proper operator if it admits anadjoint with respect to the inner product of L. A proper operator which is self-adjointwith respect to the inner product of L is called symmetrizable. By a proper subspace Swe mean a closed subspace of E which is the range of a proper projection. Furthermore,if there exists a symmetrizable projection onto S, then S belongs to a well-known class ofsubspaces called compatible subspaces. We nd equivalent conditions to describe propersubspaces. Then we prove a necessary and sucient condition for a proper subspace tobe compatible. The existence of non-compatible proper subspaces is related to spectralproperties of symmetrizable operators. Each proper subspace S has a supplement T whichis also a proper subspace.We give a characterization of the compatibility of both subspacesS and T . Several examples are provided that illustrate dierent situations between properand compatible subspaces | |
dc.language | eng | |
dc.publisher | Polish Acad Sciences Inst Mathematics | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.4064/sm8225-2-2016 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/231/3/91441/proper-subspaces-and-compatibility | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.00596 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | PROJECTION | |
dc.subject | COMPATIBLE SUBSPACE | |
dc.subject | PROPER OPERATOR | |
dc.subject | SPECTRUM | |
dc.title | Proper subspaces and compatibility | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |