dc.creator | Mainkar, Meera | |
dc.creator | Will, Cynthia Eugenia | |
dc.date.accessioned | 2018-07-11T18:34:54Z | |
dc.date.accessioned | 2018-11-06T16:11:06Z | |
dc.date.available | 2018-07-11T18:34:54Z | |
dc.date.available | 2018-11-06T16:11:06Z | |
dc.date.created | 2018-07-11T18:34:54Z | |
dc.date.issued | 2015-09 | |
dc.identifier | Mainkar, Meera; Will, Cynthia Eugenia; Characterization of 9-dimensional Anosov Lie Algebras; Heldermann Verlag; Journal Of Lie Theory; 25; 3; 9-2015; 857-873 | |
dc.identifier | 0949-5932 | |
dc.identifier | http://hdl.handle.net/11336/51753 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1905348 | |
dc.description.abstract | The classification of all real and rational Anosov Lie algebras up to dimension 8 is given by Lauret and Will. In this paper we study 9 -dimensional Anosov Lie algebras by using the properties of very special algebraic numbers and Lie algebra classification tools. We prove that there exists a unique, up to isomorphism, complex 3 -step Anosov Lie algebra of dimension 9. In the 2 -step case, we prove that a 2 -step 9 -dimensional Anosov Lie algebra with no abelian factor must have a 3 -dimensional derived algebra and we characterize these Lie algebras in terms of their Pfaffian forms. Among these Lie algebras, we exhibit a family of infinitely many complex non-isomorphic Anosov Lie algebras. | |
dc.language | eng | |
dc.publisher | Heldermann Verlag | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT25/JLT253/jlt25040.htm | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | ANOSOV | |
dc.subject | DIFFEOMORPHISM | |
dc.title | Characterization of 9-dimensional Anosov Lie Algebras | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |