dc.creatorMainkar, Meera
dc.creatorWill, Cynthia Eugenia
dc.date.accessioned2018-07-11T18:34:54Z
dc.date.accessioned2018-11-06T16:11:06Z
dc.date.available2018-07-11T18:34:54Z
dc.date.available2018-11-06T16:11:06Z
dc.date.created2018-07-11T18:34:54Z
dc.date.issued2015-09
dc.identifierMainkar, Meera; Will, Cynthia Eugenia; Characterization of 9-dimensional Anosov Lie Algebras; Heldermann Verlag; Journal Of Lie Theory; 25; 3; 9-2015; 857-873
dc.identifier0949-5932
dc.identifierhttp://hdl.handle.net/11336/51753
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1905348
dc.description.abstractThe classification of all real and rational Anosov Lie algebras up to dimension 8 is given by Lauret and Will. In this paper we study 9 -dimensional Anosov Lie algebras by using the properties of very special algebraic numbers and Lie algebra classification tools. We prove that there exists a unique, up to isomorphism, complex 3 -step Anosov Lie algebra of dimension 9. In the 2 -step case, we prove that a 2 -step 9 -dimensional Anosov Lie algebra with no abelian factor must have a 3 -dimensional derived algebra and we characterize these Lie algebras in terms of their Pfaffian forms. Among these Lie algebras, we exhibit a family of infinitely many complex non-isomorphic Anosov Lie algebras.
dc.languageeng
dc.publisherHeldermann Verlag
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT25/JLT253/jlt25040.htm
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectANOSOV
dc.subjectDIFFEOMORPHISM
dc.titleCharacterization of 9-dimensional Anosov Lie Algebras
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución