dc.creatorFraser, Jonathan
dc.creatorShmerkin, Pablo Sebastian
dc.date.accessioned2018-07-26T21:35:32Z
dc.date.accessioned2018-11-06T16:09:22Z
dc.date.available2018-07-26T21:35:32Z
dc.date.available2018-11-06T16:09:22Z
dc.date.created2018-07-26T21:35:32Z
dc.date.issued2016-12
dc.identifierFraser, Jonathan; Shmerkin, Pablo Sebastian; On the dimensions of a family of overlapping self-affine carpets; Cambridge University Press; Ergodic Theory And Dynamical Systems; 36; 8; 12-2016; 2463-2481
dc.identifier0143-3857
dc.identifierhttp://hdl.handle.net/11336/53255
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1905066
dc.description.abstractWe consider the dimensions of a family of self-affine sets related to the Bedford-McMullen carpets. In particular, we fix a Bedford-McMullen system and then randomise the translation vectors with the stipulation that the column structure is preserved. As such, we maintain one of the key features in the Bedford-McMullen set up in that alignment causes the dimensions to drop from the affinity dimension. We compute the Hausdorff, packing and box dimensions outside of a small set of exceptional translations, and also for some explicit translations even in the presence of overlapping. Our results rely on, and can be seen as a partial extension of, M. Hochman´s recent work on the dimensions of self-similar sets and measures.
dc.languageeng
dc.publisherCambridge University Press
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/div-classtitleon-the-dimensions-of-a-family-of-overlapping-self-affine-carpetsdiv/1D8911F0FA764104328BC41A235603D5
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSELF-AFFINE CARPET
dc.subjectHAUSDORFF DIMENSION
dc.subjectPACKING DIMENSION
dc.subjectBOX DIMENSION
dc.subjectOVERLAPS
dc.titleOn the dimensions of a family of overlapping self-affine carpets
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución