dc.creatordel Barco, Viviana Jorgelina
dc.creatorOvando, Gabriela Paola
dc.creatorVittone, Francisco
dc.date.accessioned2017-12-06T18:22:19Z
dc.date.accessioned2018-11-06T16:06:02Z
dc.date.available2017-12-06T18:22:19Z
dc.date.available2018-11-06T16:06:02Z
dc.date.created2017-12-06T18:22:19Z
dc.date.issued2014-01
dc.identifierdel Barco, Viviana Jorgelina; Ovando, Gabriela Paola; Vittone, Francisco; On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 11; 1; 1-2014; 137-153
dc.identifier1660-5446
dc.identifierhttp://hdl.handle.net/11336/29852
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1904606
dc.description.abstractThis work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R) and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R) by isometries and we study some geometrical features on these spaces. On H3(R), we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons
dc.languageeng
dc.publisherBirkhauser Verlag Ag
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00009-013-0312-y
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00009-013-0312-y
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectPseudo-Riemannian spaces
dc.subjectnaturally reductive
dc.subjectLie groups
dc.subjectHeisenberg groups
dc.titleOn the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución