dc.creatorMenni, Matías
dc.date.accessioned2017-08-03T19:06:47Z
dc.date.accessioned2018-11-06T16:05:50Z
dc.date.available2017-08-03T19:06:47Z
dc.date.available2018-11-06T16:05:50Z
dc.date.created2017-08-03T19:06:47Z
dc.date.issued2017-08
dc.identifierMenni, Matías; Every rig with a one-variable fixed point presentation is the burnside rig of a prextensive category; Springer; Applied Categorical Structures; 25; 4; 8-2017; 663-707
dc.identifier0927-2852
dc.identifierhttp://hdl.handle.net/11336/21827
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1904555
dc.description.abstractWe extend the work of Schanuel, Lawvere, Blass and Gates in Objective Number Theory by proving that, for any L(X) ∈ N[X], the rig N[X]/(X = L(X)) is the Burnside rig of a prextensive category.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10485-016-9475-6
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10485-016-9475-6
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectObjective number theory
dc.subjectExtensive category
dc.subjectTopos
dc.titleEvery rig with a one-variable fixed point presentation is the burnside rig of a prextensive category
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución