dc.creator | Menni, Matías | |
dc.date.accessioned | 2017-08-03T19:06:47Z | |
dc.date.accessioned | 2018-11-06T16:05:50Z | |
dc.date.available | 2017-08-03T19:06:47Z | |
dc.date.available | 2018-11-06T16:05:50Z | |
dc.date.created | 2017-08-03T19:06:47Z | |
dc.date.issued | 2017-08 | |
dc.identifier | Menni, Matías; Every rig with a one-variable fixed point presentation is the burnside rig of a prextensive category; Springer; Applied Categorical Structures; 25; 4; 8-2017; 663-707 | |
dc.identifier | 0927-2852 | |
dc.identifier | http://hdl.handle.net/11336/21827 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1904555 | |
dc.description.abstract | We extend the work of Schanuel, Lawvere, Blass and Gates in Objective Number Theory by proving that, for any L(X) ∈ N[X], the rig N[X]/(X = L(X)) is the Burnside rig of a prextensive category. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10485-016-9475-6 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10485-016-9475-6 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Objective number theory | |
dc.subject | Extensive category | |
dc.subject | Topos | |
dc.title | Every rig with a one-variable fixed point presentation is the burnside rig of a prextensive category | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |