dc.creatorGomez, Ivan
dc.creatorCannas, Sergio Alejandro
dc.creatorOsenda, Omar
dc.creatorJerez, Jose M.
dc.creatorFranco, Leonardo
dc.date.accessioned2017-12-28T17:34:14Z
dc.date.accessioned2018-11-06T16:03:15Z
dc.date.available2017-12-28T17:34:14Z
dc.date.available2018-11-06T16:03:15Z
dc.date.created2017-12-28T17:34:14Z
dc.date.issued2014-04
dc.identifierFranco, Leonardo; Jerez, Jose M.; Osenda, Omar; Cannas, Sergio Alejandro; Gomez, Ivan; The Generalization Complexity Measure for Continuous Input Data; Hindawi Publishing Corporation; The Scientific World Journal; 2014; 4-2014; 1-9
dc.identifier2356-6140
dc.identifierhttp://hdl.handle.net/11336/31822
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1904021
dc.description.abstractWe introduce in this work an extension for the generalization complexity measure to continuous input data. The measure, originallydefined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected whenusing a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use withcontinuous functions to later on, using an approach based on the use of the set of Walsh functions, consider the case of havinga finite number of data points (inputs/outputs pairs), that is, usually the practical case. Using a set of trigonometric functions amodel that gives a relationship between the size of the hidden layerof a neural network and the complexity is constructed. Finally,we demonstrate the application of the introduced complexity measure, by using the generated model, to the problem of estimatingan adequate neural network architecture for real-world data sets.
dc.languageeng
dc.publisherHindawi Publishing Corporation
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1155/2014/815156
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/tswj/2014/815156/
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectComplexity Measure
dc.subjectNeural Networks
dc.titleThe Generalization Complexity Measure for Continuous Input Data
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución