Artículos de revistas
DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression
Fecha
2016-07Registro en:
Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina Florencia; Thomale, Jürgen; et al.; DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression; National Academy Of Sciences; Proceedings Of The National Academy Of Sciences Of The United States Of America; 113; 30; 7-2016; 4311-4319
0027-8424
1091-6490
CONICET Digital
CONICET
Autor
Hampp, Stephanie
Kiessling, Tina
Buechle, Kerstin
Mansilla, Sabrina Florencia
Thomale, Jürgen
Rall, Melanie
Ahn, Jinwoo
Pospiech, Helmut
Gottifredi, Vanesa
Wiesmüller, Lisa
Resumen
DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.