Artículos de revistas
Mechanisms of copper homeostasis in bacteria
Fecha
2013-11Registro en:
Argüello, José M.; Raimunda, Daniel Cesar; Padilla Benavidez, Teresita; Mechanisms of copper homeostasis in bacteria; Frontiers; Frontiers in Cellular and Infection Microbiology; 3; 11-2013; 1-14; 73
2235-2988
CONICET Digital
CONICET
Autor
Argüello, José M.
Raimunda, Daniel Cesar
Padilla Benavidez, Teresita
Resumen
Copper is an important micronutrient required as a redox co-factor in the catalytic centers of enzymes. However, free copper is a potential hazard because of its high chemical reactivity. Consequently, organisms exert a tight control on Cu+ transport (entry-exit) and traffic through different compartments, ensuring the homeostasis required for cuproprotein synthesis and prevention of toxic effects. Recent studies based on biochemical, bioinformatics, and metalloproteomics approaches, reveal a highly regulated system of transcriptional regulators, soluble chaperones, membrane transporters, and target cuproproteins distributed in the various bacterial compartments. As a result, new questions have emerged regarding the diversity and apparent redundancies of these components, their irregular presence in different organisms, functional interactions, and resulting system architectures.