dc.creatorFernández Ferreyra, Damián Roberto
dc.date.accessioned2016-12-06T20:20:38Z
dc.date.available2016-12-06T20:20:38Z
dc.date.created2016-12-06T20:20:38Z
dc.date.issued2013-02
dc.identifierFernández Ferreyra, Damián Roberto; A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems; Springer; Mathematical Programming; 137; 1; 2-2013; 199-223
dc.identifier0025-5610
dc.identifierhttp://hdl.handle.net/11336/8934
dc.description.abstractThe quasi-Newton strategy presented in this paper preserves one of the most important features of the stabilized Sequential Quadratic Programming (sSQP) method, the local convergence without constraint qualifications assumptions. It is known that the primal-dual sequence converges quadratically assuming only the second-order sufficient condition. In this work, we show that if the matrices are updated by performing a minimization of a Bregman distance (which includes the classic updates), the quasi-Newton version of the method converges superlinearly without introducing further assumptions. Also, we show that even for an unbounded Lagrange multiplier set, the generated matrices satisfies a bounded deterioration property and the Dennis-Moré condition.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10107-011-0493-8
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10107-011-0493-8
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectStabilized Sequential Quadratic Programming
dc.subjectKarush-Kuhn-Tucker System
dc.subjectVariational Inequality
dc.subjectQuasi-Newton Methods
dc.titleA quasi-Newton strategy for the sSQP method for variational inequality and optimization problems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución