dc.creatorMiglioli, Martín Carlos
dc.date.accessioned2017-06-26T21:03:28Z
dc.date.accessioned2018-11-06T15:58:20Z
dc.date.available2017-06-26T21:03:28Z
dc.date.available2018-11-06T15:58:20Z
dc.date.created2017-06-26T21:03:28Z
dc.date.issued2014-03-27
dc.identifierMiglioli, Martín Carlos; Decompositions and complexifications of some infinite-dimensional homogeneous spaces; Elsevier; Journal Of Functional Analysis; 266; 11; 27-3-2014; 6599-6618
dc.identifier0022-1236
dc.identifierhttp://hdl.handle.net/11336/18942
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1903053
dc.description.abstractIn this paper an extended Corach-Porta-Recht decomposition theorem for Finsler symmetric spaces of semi-negative curvature in the context of reductive structures is proven. This decomposition theorem is applied to give a geometric description of the complexification of some infinite dimensional homogeneous spaces.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123614001177
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfa.2014.03.006
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1307.1138.pdf
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBanach-Lie group
dc.subjectComplexification
dc.subjectCorach-Porta-Recht decomposition
dc.subjectFinsler structure
dc.titleDecompositions and complexifications of some infinite-dimensional homogeneous spaces
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución