dc.creatorDi Maggio, Jimena Andrea
dc.creatorPaulo, Cecilia Inés
dc.creatorEstrada, Vanina Gisela
dc.creatorPerotti, Nora Ines
dc.creatorDiaz Ricci, Juan Carlos
dc.creatorDíaz, María Soledad
dc.date.accessioned2017-10-25T13:42:43Z
dc.date.accessioned2018-11-06T15:48:56Z
dc.date.available2017-10-25T13:42:43Z
dc.date.available2018-11-06T15:48:56Z
dc.date.created2017-10-25T13:42:43Z
dc.date.issued2013-12-28
dc.identifierDi Maggio, Jimena Andrea; Paulo, Cecilia Inés; Estrada, Vanina Gisela; Perotti, Nora Ines; Diaz Ricci, Juan Carlos; et al.; Parameter estimation in kinetic models for large scale biotechnological systems with advanced mathematical programming techniques; Elsevier Science Sa; Biochemical Engineering Journal; 83; 28-12-2013; 104-115
dc.identifier1369-703X
dc.identifierhttp://hdl.handle.net/11336/27055
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1901404
dc.description.abstractIn the present work, we formulate parameter estimation problems for kinetic models of large-scale dynamic biotechnological systems. We propose dynamic models of increasing complexity for metabolic networks and continuous bioreactors. The differential algebraic equations (DAE) system for the metabolic network represent the glycolysis, the phosphotransferase system and the pentose-phosphate pathway of Escherichia coli, with modifications proposed for several enzyme kinetics. The most sensitive parameters have been ranked by performing global sensitivity analysis on the dynamic metabolic network. Since the kinetic parameters for the enzymes have been obtained from in vitro experiments, the formulation of a detailed kinetic model for the metabolic network allows parameter adjustment for in vivo conditions. We formulate an unstructured non-segregated model for a chemostat to study the dynamic response to a glucose pulse in a continuous culture of E. coli. Moreover, we perform parameter estimation by formulating a maximum likelihood problem, subject to the DAE systems, within a control vector parameterization approach. Nine kinetic parameters in the metabolic network model have been estimated with good agreement with published experimental data. For the bioreactor model, seven parameters have been tuned based on experimental data obtained in this work. Numerical results show a good agreement between the observed data and the predicted profiles.
dc.languageeng
dc.publisherElsevier Science Sa
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1369703X13003598
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bej.2013.12.012
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectDYNAMIC METABOLIC NETWORK
dc.subjectDYNAMIC OPTIMIZATION
dc.subjectCONTROL VECTOR PARAMETERIZATION
dc.titleParameter estimation in kinetic models for large scale biotechnological systems with advanced mathematical programming techniques
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución