dc.creatorBottazzi, Tamara Paula
dc.creatorVarela, Alejandro
dc.date.accessioned2017-07-12T15:15:36Z
dc.date.available2017-07-12T15:15:36Z
dc.date.created2017-07-12T15:15:36Z
dc.date.issued2017-05
dc.identifierBottazzi, Tamara Paula; Varela, Alejandro; Unitary subgroups and orbits of compact self-adjoint operators; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 238; 2; 5-2017; 155-176
dc.identifier0039-3223
dc.identifierhttp://hdl.handle.net/11336/20213
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractLet H be a separable Hilbert space, and let D(B(H) ah) be the antiHermitian bounded diagonal operators in some fixed orthonormal basis and K(H) the compact operators. We study the group of unitary operators Uk,d = {u ∈ U(H) : ∃D ∈ D(B(H) ah), u − e D ∈ K(H)} in order to obtain a concrete description of short curves in unitary Fredholm orbits Ob = {e Kbe−K : K ∈ K(H) ah} of a compact self-adjoint operator b with spectral multiplicity one. We consider the rectifiable distance on Ob defined as the infimum of curve lengths measured with the Finsler metric defined by means of the quotient space K(H) ah/D(K(H) ah). Then for every c ∈ Ob and x ∈ Tc(Ob) there exists a minimal lifting Z0 ∈ B(H) ah (in the quotient norm, not necessarily compact) such that γ(t) = e tZ0 ce−tZ0 is a short curve on Ob in a certain interval.
dc.languageeng
dc.publisherPolish Academy of Sciences. Institute of Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://goo.gl/fMwN63
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/sm8690-12-2016
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectUnitary Groups
dc.subjectLie Subgroups
dc.subjectUnitary Orbits
dc.subjectGeodesic Curves
dc.subjectMinimal Operators in Quotient Spaces
dc.titleUnitary subgroups and orbits of compact self-adjoint operators
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución