dc.creatorTorres, Pablo Daniel
dc.creatorValencia Pabon, Mario
dc.date.accessioned2018-07-26T15:09:51Z
dc.date.accessioned2018-11-06T15:47:08Z
dc.date.available2018-07-26T15:09:51Z
dc.date.available2018-11-06T15:47:08Z
dc.date.created2018-07-26T15:09:51Z
dc.date.issued2017-05
dc.identifierTorres, Pablo Daniel; Valencia Pabon, Mario; Shifts of the stable Kneser graphs and hom-idempotence; Academic Press Ltd - Elsevier Science Ltd; European Journal Of Combinatorics; 62; 5-2017; 50-57
dc.identifier0195-6698
dc.identifierhttp://hdl.handle.net/11336/53157
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1901012
dc.description.abstractA graph G is said to be hom-idempotent if there is a homomorphism from G2 to G, and weakly hom-idempotent if for some n≥1 there is a homomorphism from Gn+1 to Gn. Larose et al. (1998) proved that Kneser graphs KG(n,k) are not weakly hom-idempotent for n≥2k+1, k≥2. For s≥2, we characterize all the shifts (i.e., automorphisms of the graph that map every vertex to one of its neighbors) of s-stable Kneser graphs KG(n,k)s−stab and we show that 2-stable Kneser graphs are not weakly hom-idempotent, for n≥2k+2, k≥2. Moreover, for s,k≥2, we prove that s-stable Kneser graphs KG(ks+1,k)s−stab are circulant graphs and so hom-idempotent graphs. Finally, for s≥3, we show that s-stable Kneser graphs KG(2s+2,2)s−stab are cores, not χ-critical, not hom-idempotent and their chromatic number is equal to s+2.
dc.languageeng
dc.publisherAcademic Press Ltd - Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.ejc.2016.11.012
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0195669816301160
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCARTESIAN PRODUCT OF GRAPHS
dc.subjectSTABLE KNESER GRAPHS
dc.subjectCAYLEY GRAPHS
dc.subjectHOM-IDEMPOTENT GRAPHS
dc.titleShifts of the stable Kneser graphs and hom-idempotence
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución