dc.creatorZhang, Kewei
dc.creatorCrooks, Elaine
dc.creatorOrlando, Antonio
dc.date.accessioned2018-09-28T18:20:48Z
dc.date.accessioned2018-11-06T15:45:52Z
dc.date.available2018-09-28T18:20:48Z
dc.date.available2018-11-06T15:45:52Z
dc.date.created2018-09-28T18:20:48Z
dc.date.issued2016-12
dc.identifierZhang, Kewei; Crooks, Elaine; Orlando, Antonio; Compensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Theoretical foundations; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 48; 6; 12-2016; 4126-4154
dc.identifier0036-1410
dc.identifierhttp://hdl.handle.net/11336/61259
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1900745
dc.description.abstractWe introduce Lipschitz continuous and C1;1 geometric approximation and interpolation methods for sampled bounded uniformly continuous functions over compact sets and over complements of bounded open sets in Rn by using compensated convex transforms. Error estimates are provided for the approximations of bounded uniformly continuous functions, of Lipschitz functions, and of C1;1 functions. We also prove that our approximation methods, which are differentiation and integration free and not sensitive to sample type, are stable with respect to the Hausdorff distance between samples.
dc.languageeng
dc.publisherSociety for Industrial and Applied Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/15M1045673
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1137/15M1045673
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAPPROXIMATION
dc.subjectCOMPENSATED CONVEX TRANSFORMS
dc.subjectERROR ESTIMATES
dc.subjectHAUSDORFF STABILITY
dc.subjectINTERPOLATION
dc.subjectLIPSCHITZ FUNCTIONS
dc.subjectLOCAL-LIPSCHITZ APPROXIMATION
dc.titleCompensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Theoretical foundations
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución