dc.creatorDubuc, Eduardo Julio
dc.date.accessioned2017-04-07T20:41:52Z
dc.date.accessioned2018-11-06T15:45:39Z
dc.date.available2017-04-07T20:41:52Z
dc.date.available2018-11-06T15:45:39Z
dc.date.created2017-04-07T20:41:52Z
dc.date.issued2010-04
dc.identifierDubuc, Eduardo Julio; 2-Filteredness and The Point of Every Galois Topos; Springer; Applied Categorical Structures; 18; 2; 4-2010; 115-121
dc.identifier0927-2852
dc.identifierhttp://hdl.handle.net/11336/15029
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1900694
dc.description.abstractA connected locally connected topos is a Galois topos if the Galois objects generate the topos. We show that the full subcategory of Galois objects in any connected locally connected topos is an inversely 2-filtered 2-category, and as an application of the construction of 2-filtered bi-limits of topoi, we show that every Galois topos has a point.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10485-008-9145-4
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10485-008-9145-4
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectGALOIS TOPOS
dc.subject2-FILTERED
dc.title2-Filteredness and The Point of Every Galois Topos
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución