dc.creatorChicco Ruiz, Anibal Leonardo
dc.creatorMorin, Pedro
dc.creatorPauletti, Miguel Sebastian
dc.date.accessioned2017-12-28T20:02:02Z
dc.date.accessioned2018-11-06T15:45:35Z
dc.date.available2017-12-28T20:02:02Z
dc.date.available2018-11-06T15:45:35Z
dc.date.created2017-12-28T20:02:02Z
dc.date.issued2016-04
dc.identifierPauletti, Miguel Sebastian; Morin, Pedro; Chicco Ruiz, Anibal Leonardo; An algorithm for prescribed mean curvature using isogeometric methods; Elsevier; Journal of Computational Physics; 317; 4-2016; 185-203
dc.identifier0021-9991
dc.identifierhttp://hdl.handle.net/11336/31884
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1900679
dc.description.abstractWe present a Newton type algorithm to find parametric surfaces of prescribed mean curvature with a fixed given boundary. In particular, it applies to the problem of minimal surfaces. The algorithm relies on some global regularity of the spaces where it is posed, which is naturally fitted for discretization with isogeometric type of spaces. We introduce a discretization of the continuous algorithm and present a simple implementation using the recently released isogeometric software library igatools. Finally, we show several numerical experiments which highlight the convergence properties of the scheme.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021999116300444
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jcp.2016.04.012
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMinimal surfaces
dc.subjectPrescribed curvature
dc.subjectIsogeometric analysis
dc.subjectQuasi-newton
dc.titleAn algorithm for prescribed mean curvature using isogeometric methods
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución