dc.creatorDaoust, Alexia
dc.creatorSaoudi, Yasmina
dc.creatorBrocard, Jacques
dc.creatorCollomb, Nora
dc.creatorBatandier, Cecile
dc.creatorBisbal, Mariano
dc.creatorSalomé, Murielle
dc.creatorAndrieux, Annie
dc.creatorBohic, Sylvain
dc.creatorBarbier , Emmanuel
dc.date.accessioned2017-12-27T14:15:43Z
dc.date.accessioned2018-11-06T15:44:54Z
dc.date.available2017-12-27T14:15:43Z
dc.date.available2018-11-06T15:44:54Z
dc.date.created2017-12-27T14:15:43Z
dc.date.issued2014-05
dc.identifierBarbier , Emmanuel; Andrieux, Annie; Salomé, Murielle; Bisbal, Mariano; Batandier, Cecile; Collomb, Nora; et al.; Impact of manganese on primary hippocampal neurons from rodents; Wiley-liss, Div John Wiley & Sons Inc; Hippocampus; 24; 5; 5-2014; 598-610
dc.identifier1050-9631
dc.identifierhttp://hdl.handle.net/11336/31630
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1900548
dc.description.abstractManganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for in vivo tract tracing or functional imaging of the central nervous system. However Mn2+ may be toxic at high levels. In this study, we addressed the impact of Mn2+ on mouse hippocampal neurons (HN) and neuron-like N2a cells in culture, using several approaches. Both HN and N2a cells not exposed to exogenous MnCl2 were shown by synchrotron X-ray fluorescence to contain 5 mg/g Mn. Concentrations of Mn2+ leading to 50% lethality (LC50) after 24 h of incubation were much higher for N2a cells (863 mM) than for HN (90 mM). The distribution of Mn2+ in both cell types exposed to Mn2+ concentrations below LC50 was perinuclear whereas that in cells exposed to concentrations above LC50 was more diffuse, suggesting an overloading of cell storage/detoxification capacity. In addition, Mn2+ had a cell-type and dose-dependent impact on the total amount of intracellular P, Ca, Fe and Zn measured by synchrotron X-ray fluorescence. For HN neurons, immunofluorescence studies revealed that concentrations of Mn2+ below LC50 shortened neuritic length and decreased mitochondria velocity after 24 h of incubation. Similar concentrations of Mn2+ also facilitated the opening of the mitochondrial permeability transition pore in isolated mitochondria from rat brains. The sensitivity of primary HN to Mn2+ demonstrated here supports their use as a relevant model to study Mn2+-induced neurotoxicity.
dc.languageeng
dc.publisherWiley-liss, Div John Wiley & Sons Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/hipo.22252
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/hipo.22252/abstract
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectmanganese
dc.subjectMEMRI
dc.subjectX-ray synchrotron
dc.subjecthippocampalneurons
dc.subjectmitochondria
dc.titleImpact of manganese on primary hippocampal neurons from rodents
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución