dc.creatorEchebest, Nélida Ester
dc.creatorSanchez, María Daniela
dc.creatorSchuverdt, María Laura
dc.date.accessioned2018-07-30T17:38:16Z
dc.date.accessioned2018-11-06T15:37:12Z
dc.date.available2018-07-30T17:38:16Z
dc.date.available2018-11-06T15:37:12Z
dc.date.created2018-07-30T17:38:16Z
dc.date.issued2016-01
dc.identifierEchebest, Nélida Ester; Sanchez, María Daniela; Schuverdt, María Laura; Convergence Results of an Augmented Lagrangian Method Using the Exponential Penalty Function; Springer/Plenum Publishers; Journal Of Optimization Theory And Applications; 168; 1; 1-2016; 92-108
dc.identifier0022-3239
dc.identifierhttp://hdl.handle.net/11336/53423
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1899140
dc.description.abstractIn the present research, an Augmented Lagrangian method with the use of the exponential penalty function for solving inequality constraints problems is considered. Global convergence is proved using the constant positive generator constraint qualification when the subproblem is solved in an approximate form. Since this constraint qualification was defined recently, the present convergence result is new for the Augmented Lagrangian method based on the exponential penalty function. Boundedness of the penalty parameters is proved considering classical conditions. Three illustrative examples are presented.
dc.languageeng
dc.publisherSpringer/Plenum Publishers
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/s10957-015-0735-7
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10957-015-0735-7
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAUGMENTED LAGRANGIAN METHODS
dc.subjectCONSTRAINT QUALIFICATIONS
dc.subjectGLOBAL CONVERGENCE
dc.subjectNONLINEAR PROGRAMMING
dc.subjectTHE EXPONENTIAL PENALTY FUNCTION
dc.titleConvergence Results of an Augmented Lagrangian Method Using the Exponential Penalty Function
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución