dc.creatorSalvai, Marcos Luis
dc.date.accessioned2018-07-12T15:09:12Z
dc.date.accessioned2018-11-06T15:34:54Z
dc.date.available2018-07-12T15:09:12Z
dc.date.available2018-11-06T15:34:54Z
dc.date.created2018-07-12T15:09:12Z
dc.date.issued2015-10
dc.identifierSalvai, Marcos Luis; Generalized geometric structures on complex and symplectic manifolds; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 194; 5; 10-2015; 1505-1525
dc.identifier0373-3114
dc.identifierhttp://hdl.handle.net/11336/51852
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1898768
dc.description.abstractOn a smooth manifold MM, generalized complex (generalized paracomplex) structures provide a notion of interpolation between complex (paracomplex) and symplectic structures on MM. Given a complex manifold M,j, we define six families of distinguished generalized complex or paracomplex structures on MM. Each one of them interpolates between two geometric structures on MM compatible with jj, for instance, between totally real foliations and Kähler structures, or between hypercomplex and C-symplectic structures. These structures on MM are sections of fiber bundles over MM with typical fiber G/HG/H for some Lie groups GG and HH. We determine GG and HH in each case. We proceed similarly for symplectic manifolds. We define six families of generalized structures on M,ω, each of them interpolating between two structures compatible with ω, for instance, between a C-symplectic and a para-Kähler structure (aka bi-Lagrangian foliation).
dc.languageeng
dc.publisherSpringer Heidelberg
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10231-014-0431-5
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectGENERALIZED COMPLEX STRUCTURE
dc.subjectHYPERCOMPLEX
dc.subjectINTERPOLATION
dc.subjectKÄHLER
dc.subjectSIGNATURE
dc.titleGeneralized geometric structures on complex and symplectic manifolds
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución