Artículos de revistas
Cure kinetics and shrinkage model for epoxy-amine systems
Fecha
2005-12Registro en:
Ramos, Jorge Alberto; Pagani, Néstor Hernán; Riccardi, Carmen Cristina; Borrajo Fernandez, Julio; Goyanes, Silvia Nair; et al.; Cure kinetics and shrinkage model for epoxy-amine systems; Elsevier; Polymer; 46; 10; 12-2005; 3323-3328
0032-3861
CONICET Digital
CONICET
Autor
Ramos, Jorge Alberto
Pagani, Néstor Hernán
Riccardi, Carmen Cristina
Borrajo Fernandez, Julio
Goyanes, Silvia Nair
Mondragon, Iñaki
Resumen
Manufacture of most of epoxy resins implies that cure needs to be carried out under pressure. Due to the significance of knowing the influence of the pressure factor in cure kinetics, cure shrinkage of a stoichiometric epoxy-amine system was measured using a pressure-volume-temperature (PVT) analyzer. Recording the specific volume change in the range of temperature from 100 to 180 °C and a pressure of 200 bar we could model the cure kinetics. The Runge-Kutta method was applied to obtain the kinetic constants of the cure reaction. In addition, using the differential scanning calorimeter (DSC) for measurements of 1 bar and the PVT analyzer for pressures of 200, 400, and 600 bar, we also model the kinetic constants as a function of pressure. The results obtained show that the effect of the temperature on the kinetic constants is higher than the effect of pressure. Therefore, both PVT and DSC are complementary techniques to describe the full range of cure kinetic process of epoxy mixtures. © 2005 Elsevier Ltd. All rights reserved.