dc.creatordel Pezzo, Leandro Martin
dc.creatorRossi, Julio Daniel
dc.date.accessioned2018-09-17T19:36:37Z
dc.date.accessioned2018-11-06T15:28:06Z
dc.date.available2018-09-17T19:36:37Z
dc.date.available2018-11-06T15:28:06Z
dc.date.created2018-09-17T19:36:37Z
dc.date.issued2016-12
dc.identifierdel Pezzo, Leandro Martin; Rossi, Julio Daniel; Eigenvalues for a nonlocal pseudo p-Laplacian; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 36; 12; 12-2016; 6737-6765
dc.identifier1078-0947
dc.identifierhttp://hdl.handle.net/11336/59963
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1897470
dc.description.abstractIn this paper we study the eigenvalue problems for a nonlocal operator of order s that is analogous to the local pseudo p-Laplacian. We show that there is a sequence of eigenvalues λn→ ∞and that the first one is positive, simple, isolated and has a positive and bounded associated eigenfunction. For the first eigenvalue we also analyze the limits as p → ∞ (obtaining a limit nonlocal eigenvalue problem analogous to the pseudo infinity Laplacian) and as s → 1- (obtaining the first eigenvalue for a local operator of p-Laplacian type). To perform this study we have to introduce anisotropic fractional Sobolev spaces and prove some of their properties.
dc.languageeng
dc.publisherAmerican Institute of Mathematical Sciences
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcds.2016093
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=13163
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectASYMPTOTIC BEHAVIOR
dc.subjectDIRICHLET BOUNDARY CONDITIONS
dc.subjectEIGENVALUES
dc.subjectNONLOCAL OPERATOR
dc.titleEigenvalues for a nonlocal pseudo p-Laplacian
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución