Artículos de revistas
Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics
Fecha
2010-01Registro en:
Craiem, Damian; Magin, Richard L.; Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics; IOP Publishing; Physical Biology; 7; 1; 1-2010; 13001-13003
1478-3967
CONICET Digital
CONICET
Autor
Craiem, Damian
Magin, Richard L.
Resumen
New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress-strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.