dc.creatorFerrero, Ezequiel E.
dc.creatorBustingorry, Sebastián
dc.creatorKolton, Alejandro Benedykt
dc.date.accessioned2017-08-04T21:42:11Z
dc.date.available2017-08-04T21:42:11Z
dc.date.created2017-08-04T21:42:11Z
dc.date.issued2013-03-11
dc.identifierFerrero, Ezequiel E.; Bustingorry, Sebastián; Kolton, Alejandro Benedykt; Nonsteady relaxation and critical exponents at the depinning transition; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 87; 3; 11-3-2013; 1-14
dc.identifier1539-3755
dc.identifierhttp://hdl.handle.net/11336/21933
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractWe study the nonsteady relaxation of a driven one-dimensional elastic interface at the depinning transition by extensive numerical simulations concurrently implemented on graphics processing units. We compute the time-dependent velocity and roughness as the interface relaxes from a flat initial configuration at the thermodynamic random-manifold critical force. Above a first, nonuniversal microscopic time regime, we find a nontrivial long crossover towards the nonsteady macroscopic critical regime. This “mesoscopic” time regime is robust under changes of the microscopic disorder, including its random-bond or random-field character, and can be fairly described as power-law corrections to the asymptotic scaling forms, yielding the true critical exponents. In order to avoid fitting effective exponents with a systematic bias we implement a practical criterion of consistency and perform large-scale ( L ≃ 2 25 ) simulations for the nonsteady dynamics of the continuum displacement quenched Edwards-Wilkinson equation, getting accurate and consistent depinning exponents for this class: β = 0.245 ± 0.006 , z = 1.433 ± 0.007 , ζ = 1.250 ± 0.005 , and ν = 1.333 ± 0.007 . Our study may explain numerical discrepancies (as large as 30 % for the velocity exponent β ) found in the literature. It might also be relevant for the analysis of experimental protocols with driven interfaces keeping a long-term memory of the initial condition.
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.87.032122
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.032122
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1211.7275
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDisorder
dc.subjectDepinning
dc.subjectShort Time Dynamics
dc.subjectCritical Exponents
dc.titleNonsteady relaxation and critical exponents at the depinning transition
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución