dc.creatorKrause, Gustavo Javier
dc.creatorElaskar, Sergio Amado
dc.creatorCosta, Andrea
dc.date.accessioned2018-01-03T22:09:33Z
dc.date.accessioned2018-11-06T15:24:03Z
dc.date.available2018-01-03T22:09:33Z
dc.date.available2018-11-06T15:24:03Z
dc.date.created2018-01-03T22:09:33Z
dc.date.issued2014-04
dc.identifierCosta, Andrea; Elaskar, Sergio Amado; Krause, Gustavo Javier; Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation; Hindawi Publishing Corporation; Journal of Astrophysics; 2014; 4-2014; 1-15; 812052
dc.identifier2356-718X
dc.identifierhttp://hdl.handle.net/11336/32257
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1896740
dc.description.abstractWhen the Hall effect is included in the magnetohydrodynamics equations (Hall-MHD model) the wave propagation modes become coupled, but for propagation parallel to the ambient magnetic field the Alfvén mode decouples from the magnetosonic ones, resulting in circularly polarized waves that are described by the derivative nonlinear Schrödinger (DNLS) equation. In this paper, the DNLS equation is numerically solved using spectral methods for the spatial derivatives and a fourth order Runge-Kutta scheme for time integration. Firstly, the nondiffusive DNLS equation is considered to test the validity of the method by verifying the analytical condition of modulational stability. Later, diffusive and excitatory effects are incorporated to compare the numerical results with those obtained by a three-wave truncation model. The results show that different types of attractors can exist depending on the diffusion level: for relatively large damping, there are fixed points for which the truncation model is a good approximation; for low damping, chaotic solutions appear and the three-wave truncation model fails due to the emergence of new nonnegligible modes.
dc.languageeng
dc.publisherHindawi Publishing Corporation
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1155/2014/812052
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/jas/2014/812052/
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDNLS EQUATION
dc.subjectSPECTRAL METHODS
dc.subjectTRUNCATION METHOD
dc.subjectALFVÉN WAVES
dc.titleChaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución