dc.creatorCarignano, Mauro
dc.creatorCosta-Castelló, Ramon
dc.creatorRoda, Vicente
dc.creatorNigro, Norberto Marcelo
dc.creatorJunco, Sergio Jose
dc.creatorFeroldi, Diego Hernán
dc.date.accessioned2018-11-01T17:58:37Z
dc.date.accessioned2018-11-06T15:23:49Z
dc.date.available2018-11-01T17:58:37Z
dc.date.available2018-11-06T15:23:49Z
dc.date.created2018-11-01T17:58:37Z
dc.date.issued2017-08
dc.identifierCarignano, Mauro; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto Marcelo; Junco, Sergio Jose; et al.; Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand; Elsevier Science; Journal of Power Sources; 360; 8-2017; 419-433
dc.identifier0378-7753
dc.identifierhttp://hdl.handle.net/11336/63459
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1896723
dc.description.abstractOffering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0378775317307887
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpowsour.2017.06.016
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFUEL CELL-SUPERCAPACITOR HYBRID VEHICLE
dc.subjectSTATE CONSTRAINT
dc.subjectENERGY MANAGEMENT STRATEGY
dc.subjectFUEL ECONOMY
dc.subjectDRIVABILITY
dc.titleEnergy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución