dc.creatorAlmarza, Javier Ignacio
dc.creatorFigueira, Santiago
dc.date.accessioned2018-04-23T21:18:51Z
dc.date.accessioned2018-11-06T15:17:25Z
dc.date.available2018-04-23T21:18:51Z
dc.date.available2018-11-06T15:17:25Z
dc.date.created2018-04-23T21:18:51Z
dc.date.issued2015-04
dc.identifierAlmarza, Javier Ignacio; Figueira, Santiago; Normality in non-integer bases and polynomial time randomness; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 81; 7; 4-2015; 1059-1087
dc.identifier0022-0000
dc.identifierhttp://hdl.handle.net/11336/43163
dc.identifier1090-2724
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1895686
dc.description.abstractIt is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jcss.2015.04.005
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022000015000434
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.8594
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAlgorithmic randomness
dc.subjectDeterministic finite automaton
dc.subjectSubshift
dc.subjectPisot number
dc.subjectNormality
dc.subjectPolynomial randomness
dc.subjectMartingale
dc.titleNormality in non-integer bases and polynomial time randomness
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución