dc.creator | Almarza, Javier Ignacio | |
dc.creator | Figueira, Santiago | |
dc.date.accessioned | 2018-04-23T21:18:51Z | |
dc.date.accessioned | 2018-11-06T15:17:25Z | |
dc.date.available | 2018-04-23T21:18:51Z | |
dc.date.available | 2018-11-06T15:17:25Z | |
dc.date.created | 2018-04-23T21:18:51Z | |
dc.date.issued | 2015-04 | |
dc.identifier | Almarza, Javier Ignacio; Figueira, Santiago; Normality in non-integer bases and polynomial time randomness; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 81; 7; 4-2015; 1059-1087 | |
dc.identifier | 0022-0000 | |
dc.identifier | http://hdl.handle.net/11336/43163 | |
dc.identifier | 1090-2724 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1895686 | |
dc.description.abstract | It is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness. | |
dc.language | eng | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jcss.2015.04.005 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022000015000434 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.8594 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Algorithmic randomness | |
dc.subject | Deterministic finite automaton | |
dc.subject | Subshift | |
dc.subject | Pisot number | |
dc.subject | Normality | |
dc.subject | Polynomial randomness | |
dc.subject | Martingale | |
dc.title | Normality in non-integer bases and polynomial time randomness | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |