dc.creatorAparicio, Evangelina
dc.creatorMathieu, Patricia Andrea
dc.creatorPereira Luppi, Milagros
dc.creatorAlmeira Gubiani, María Florencia
dc.creatorAdamo, Ana Maria
dc.date.accessioned2016-09-23T17:53:23Z
dc.date.accessioned2018-11-06T15:17:16Z
dc.date.available2016-09-23T17:53:23Z
dc.date.available2018-11-06T15:17:16Z
dc.date.created2016-09-23T17:53:23Z
dc.date.issued2013-12
dc.identifierAparicio, Evangelina; Mathieu, Patricia Andrea; Pereira Luppi, Milagros ; Almeira Gubiani, María Florencia; Adamo, Ana Maria; The Notch Signaling Pathway: Its Role in Focal CNS Demyelination and Apotransferrin-Induced Remyelination; Wiley; Journal Of Neurochemistry; 127; 6; 12-2013; 819-836
dc.identifier0022-3042
dc.identifierhttp://hdl.handle.net/11336/7693
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1895657
dc.description.abstractOligodendroglial damage and demyelination are common pathological features characterizing white matter and neurodegenerative disorders. Identifying the signaling pathways involved in myelin repair through oligodendroglial progenitor maturation is essential for the development of new therapies. This article investigated the role of the Notch signaling pathway in CNS demyelination and apotransferrin-induced remyelination in a focal lysolecithin-induced demyelination model in rats. Notch was found activated in Nestin-expressing neural progenitor cells and in NG2-expressing oligodendroglial precursor cells in the subventricular zone and corpus callosum of lysolecithin-demyelinated rats. Notch activation seemed to be driven by Jagged1, which led to a high expression of downstream gene Hes5 in the subventricular zone of demyelinated rats. Apotransferrin injection induced remyelination, while the injection of the γ-secretase inhibitor reversed this effect. In addition, 24 h after apotransferrin injection, evidence showed Notch activation concomitantly with an increase in F3/contactin levels and the up-regulation of the myelin-associated glycoprotein gene in the subventricular zone and corpus callosum of demyelinated rats. Collected evidence supports the participation of both canonical and non-canonical Notch signaling pathways in demyelination/remyelination. Notch activation was found to trigger Hes5 expression as a consequence of focal demyelination, which might promote oligodendroglial precursor cell proliferation. During apotransferrin-induced remyelination, Notch activation seemed to be mediated by the expression of F3/contactin, which might induce apotransferrin-mediated oligodendroglial maturation.
dc.languageeng
dc.publisherWiley
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/jnc.12440/abstract
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/jnc.12440
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAPOTRANSFERRIN
dc.subjectDEMYELINATION
dc.subjectNOTCH-SIGNALING
dc.subjectREMYELINATION
dc.titleThe Notch Signaling Pathway: Its Role in Focal CNS Demyelination and Apotransferrin-Induced Remyelination
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución