dc.creatorKuijlaars, Arno B. J.
dc.creatorRomán, Pablo Manuel
dc.date.accessioned2018-09-19T17:36:41Z
dc.date.accessioned2018-11-06T15:14:10Z
dc.date.available2018-09-19T17:36:41Z
dc.date.available2018-11-06T15:14:10Z
dc.date.created2018-09-19T17:36:41Z
dc.date.issued2017-07
dc.identifierKuijlaars, Arno B. J.; Román, Pablo Manuel; Spherical functions approach to sums of Random Hermitian Matrices; Oxford University Press; International Mathematics Research Notices; 7-2017
dc.identifier1073-7928
dc.identifierhttp://hdl.handle.net/11336/60242
dc.identifier1687-0247
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1895013
dc.description.abstractWe present an approach to sums of random Hermitian matrices via the theory of spher- ical functions for the Gelfand pair (U(n) Herm(n), U(n)). It is inspired by a similar approach of Kieburg and Kösters for products of random matrices. The spherical func- tions have determinantal expressions because of the Harish-Chandra/Itzykson?Zuber integral formula. It leads to remarkably simple expressions for the spherical transform and its inverse. The spherical transform is applied to sums of unitarily invariant ran- dom matrices from polynomial ensembles and the subclass of polynomial ensembles of derivative type (in the additive sense), which turns out to be closed under addition. We finally present additional detailed calculations for the sum with a random matrix from a Laguerre unitary ensemble.
dc.languageeng
dc.publisherOxford University Press
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-lookup/doi/10.1093/imrn/rnx146
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/imrn/rnx146
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSPHERICAL FUNCTIONS
dc.subjectRANDOM MATRICES
dc.subjectSUMS OF RANDOM MATRICES
dc.titleSpherical functions approach to sums of Random Hermitian Matrices
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución