dc.creatorSalort, Ariel Martin
dc.date.accessioned2017-06-26T19:58:18Z
dc.date.accessioned2018-11-06T15:13:20Z
dc.date.available2017-06-26T19:58:18Z
dc.date.available2018-11-06T15:13:20Z
dc.date.created2017-06-26T19:58:18Z
dc.date.issued2016-12
dc.identifierSalort, Ariel Martin; Eigenvalues homogenization for the fractional p-laplacian; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 312; 12-2016; 1-13
dc.identifier1072-6691
dc.identifierhttp://hdl.handle.net/11336/18913
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1894826
dc.description.abstractIn this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.
dc.languageeng
dc.publisherTexas State University. Department of Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2016/312/abstr.html
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1310.7992
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjecteigenvalue
dc.subjecthomogenization
dc.subjectfractional laplacian
dc.subjectnonlocal
dc.titleEigenvalues homogenization for the fractional p-laplacian
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución