dc.creatorAlcoba, Diego Ricardo
dc.creatorTel, L. M.
dc.creatorPérez Romero, E.
dc.creatorValdemoro, C.
dc.date.accessioned2018-08-24T15:34:00Z
dc.date.accessioned2018-11-06T15:11:39Z
dc.date.available2018-08-24T15:34:00Z
dc.date.available2018-11-06T15:11:39Z
dc.date.created2018-08-24T15:34:00Z
dc.date.issued2011-04
dc.identifierAlcoba, Diego Ricardo; Tel, L. M.; Pérez Romero, E.; Valdemoro, C.; Convergence and computational efficiency enhancements in the iterative solution of the G-particle-hole hypervirial equation; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 111; 5; 4-2011; 937-949
dc.identifier0020-7608
dc.identifierhttp://hdl.handle.net/11336/56960
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1894524
dc.description.abstractThe G-particle-hole hypervirial (GHV) equation has been recently reported (Valdemoro et al., Sixth International Congress of the International Society for Theoretical Chemical Physics Vancouver: Canada, 2008. Alcoba et al., Int J Quantum Chem 2009, 109, 3178; Valdemoro et al., Int J Quantum Chem 2009, 109, 2622). This equation is the newest member of the family of equations which can be obtained by applying a matrix-contracting mapping (Valdemoro, An R Soc Esp Fís 1983, 79, 106; Valdemoro, Phys Rev A 1985, 31, 2114; Valdemoro, in Density Matrices and Density Functionals, Reidel: Dordrecht, 1987; p 275.) to the matrix representation in the N-electron space of the Schrödinger, Liouville and hypervirial equations. The procedure that we have applied in order to solve the GHV equation exploits the stationary property of the hypervirials (Hirschfelder, J Chem Phys 1960, 33, 1462; Hirschfelder and Epstein, Phys Rev 1961, 123, 1495) and follows the general lines of Mazziotti's variational approach for solving the anti-Hermitian contracted Schrödinger equation (ACSE) (Mazziotti, Phys Rev Lett 2006, 97, 143002; Mazziotti, Phys Rev A 2007, 75, 022505; Mazziotti, J Chem Phys 2007, 126, 184101). In this article, we report how the method's convergence has been significantly enhanced and how its computational scaling has been considerably reduced (in both floating-point operations and storage). The results for a variety of atomic and molecular calculations confirming these methodological improvements are reported here. Copyright © 2010 Wiley Periodicals, Inc.
dc.languageeng
dc.publisherJohn Wiley & Sons Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1002/qua.22458
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.22458
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCONTRACTED SCHRÖDINGER EQUATION
dc.subjectCORRELATION MATRIX
dc.subjectELECTRONIC CORRELATION EFFECTS
dc.subjectG-MATRIX
dc.subjectHYPERVIRIAL OF THE G-PARTICLE-HOLE MATRIX
dc.subjectREDUCED DENSITY MATRIX
dc.titleConvergence and computational efficiency enhancements in the iterative solution of the G-particle-hole hypervirial equation
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución