dc.creatorAndruchow, Esteban
dc.date.accessioned2016-01-06T15:56:30Z
dc.date.accessioned2018-11-06T15:11:00Z
dc.date.available2016-01-06T15:56:30Z
dc.date.available2018-11-06T15:11:00Z
dc.date.created2016-01-06T15:56:30Z
dc.date.issued2015-01
dc.identifierAndruchow, Esteban; Parametrizing projections with selfadjoint operators; Elsevier Science Inc; Linear Algebra And Its Applications; 466; 1-2015; 307-328
dc.identifier0024-3795
dc.identifierhttp://hdl.handle.net/11336/3381
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1894421
dc.description.abstractLet H=H+⊕H− be an orthogonal decomposition of a Hilbert space, with E+, E− the corresponding projections. Let A be a selfadjoint operator in H which is codiagonal with respect to this decomposition (i.e. A(H+)⊂H− and A(H−)⊂H+). We consider three maps which assign a selfadjoint projection to A: 1.The graph map Γ : Γ(A)=projection onto the graph of A|H+. 2.The exponential map of the Grassmann manifold P of H (the space of selfadjoint projections in H) at E+: . 3.The map p, called here the Davis' map, based on a result by Chandler Davis, characterizing the selfadjoint contractions which are the difference of two projections. The ranges of these maps are studied and compared. Using Davis' map, one can solve the following operator matrix completion problem: given a contraction a:H−→H+, complete the matrix to a projection P , in order that ‖P−E+‖ is minimal.
dc.languageeng
dc.publisherElsevier Science Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.10.029
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.laa.2014.10.029
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectProjection
dc.subjectSelfadjoint operator
dc.titleParametrizing projections with selfadjoint operators
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución