dc.creatorGroisman, Pablo Jose
dc.creatorSaglietti, Santiago Juan
dc.date.accessioned2017-07-07T21:50:06Z
dc.date.accessioned2018-11-06T15:06:55Z
dc.date.available2017-07-07T21:50:06Z
dc.date.available2018-11-06T15:06:55Z
dc.date.created2017-07-07T21:50:06Z
dc.date.issued2012-01
dc.identifierGroisman, Pablo Jose; Saglietti, Santiago Juan; Small random perturbations of a dynamical system with blow-up; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 385; 1; 1-2012; 150-166
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11336/19945
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1893913
dc.description.abstractWe study small random perturbations by additive white-noise of a spatial discretization of a reaction–diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove that the perturbed system blows up with total probability and establish its order of magnitude and asymptotic distribution. For initial data in the domain of explosion we prove that the explosion time converges to the deterministic one while for initial data in the domain of attraction of the stable equilibrium we show that the system exhibits metastable behavior.
dc.languageeng
dc.publisherElsevier Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2011.06.034
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11005828
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1011.3414
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBlow-up
dc.subjectMetastability
dc.subjectStochastic differential equations
dc.titleSmall random perturbations of a dynamical system with blow-up
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución