dc.creator | Acosta Rodriguez, Gabriel | |
dc.creator | Armentano, Maria Gabriela | |
dc.date.accessioned | 2017-12-13T19:29:02Z | |
dc.date.accessioned | 2018-11-06T15:05:54Z | |
dc.date.available | 2017-12-13T19:29:02Z | |
dc.date.available | 2018-11-06T15:05:54Z | |
dc.date.created | 2017-12-13T19:29:02Z | |
dc.date.issued | 2013-05 | |
dc.identifier | Acosta Rodriguez, Gabriel; Armentano, Maria Gabriela; Eigenvalue problems in a non-Lipschitz domain; Oxford University Press; Ima Journal Of Numerical Analysis; 34; 1; 5-2013; 83-95 | |
dc.identifier | 0272-4979 | |
dc.identifier | http://hdl.handle.net/11336/30519 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1893770 | |
dc.description.abstract | In this paper we analyse piecewise linear finite element approximations of the Laplace eigenvalue problem in the plane domain Ω = { (x,y) : 0 < x < 1 , 0 < y < xα}, which gives for 1<α the simplest model of an external cusp. Since Ω is curved and non-Lipschitz, the classical spectral theory cannot be applied directly. We present the eigenvalue problem in a proper setting, and relying on known convergence results for the associated source problem with α<3, we obtain a quasi-optimal order of convergence for the eigenpairs. | |
dc.language | eng | |
dc.publisher | Oxford University Press | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/imanum/drt012 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/34/1/83/670573 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Cuspidal domains | |
dc.subject | Eigenvalue problems | |
dc.title | Eigenvalue problems in a non-Lipschitz domain | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |