dc.creatorAcosta Rodriguez, Gabriel
dc.creatorArmentano, Maria Gabriela
dc.date.accessioned2017-12-13T19:29:02Z
dc.date.accessioned2018-11-06T15:05:54Z
dc.date.available2017-12-13T19:29:02Z
dc.date.available2018-11-06T15:05:54Z
dc.date.created2017-12-13T19:29:02Z
dc.date.issued2013-05
dc.identifierAcosta Rodriguez, Gabriel; Armentano, Maria Gabriela; Eigenvalue problems in a non-Lipschitz domain; Oxford University Press; Ima Journal Of Numerical Analysis; 34; 1; 5-2013; 83-95
dc.identifier0272-4979
dc.identifierhttp://hdl.handle.net/11336/30519
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1893770
dc.description.abstractIn this paper we analyse piecewise linear finite element approximations of the Laplace eigenvalue problem in the plane domain Ω = { (x,y) : 0 < x < 1 , 0 < y < xα}, which gives for 1<α the simplest model of an external cusp. Since Ω is curved and non-Lipschitz, the classical spectral theory cannot be applied directly. We present the eigenvalue problem in a proper setting, and relying on known convergence results for the associated source problem with α<3, we obtain a quasi-optimal order of convergence for the eigenpairs.
dc.languageeng
dc.publisherOxford University Press
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/imanum/drt012
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/34/1/83/670573
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCuspidal domains
dc.subjectEigenvalue problems
dc.titleEigenvalue problems in a non-Lipschitz domain
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución