dc.creatorYannibelli, Virginia Daniela
dc.creatorAmandi, Analia Adriana
dc.date.accessioned2016-07-29T21:43:53Z
dc.date.accessioned2018-11-06T15:05:38Z
dc.date.available2016-07-29T21:43:53Z
dc.date.available2018-11-06T15:05:38Z
dc.date.created2016-07-29T21:43:53Z
dc.date.issued2015-11
dc.identifierYannibelli, Virginia Daniela; Amandi, Analia Adriana; Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes; Springer; Lecture Notes In Computer Science; 9413; 11-2015; 401-412
dc.identifier0302-9743
dc.identifierhttp://hdl.handle.net/11336/6836
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1893734
dc.description.abstractIn this paper, we present a hybrid evolutionary algorithm with self-adaptive processes to solve a known project scheduling problem. This problem takes into consideration an optimization objective priority for project managers: to maximize the effectiveness of the sets of human resources assigned to the project activities. The hybrid evolutionary algorithm integrates self-adaptive processes with the aim of enhancing the evolutionary search. The behavior of these processes is self-adaptive according to the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is evaluated on six different instance sets and then is compared with that of the best algorithm previously proposed in the literature for the addressed problem. The obtained results show that the hybrid evolutionary algorithm considerably outperforms the previous algorithm.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-27060-9_33
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-27060-9_33
dc.relationinfo:eu-repo/semantics/altIdentifier/url/10.1007/978-3-319-27060-9_33
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectproject scheduling
dc.subjecthuman resource assignment
dc.subjectmulti-skilled resources
dc.subjecthybrid evolutionary algorithms
dc.titleScheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución