info:eu-repo/semantics/article
Developmental thermal plasticity among Drosophila melanogaster populations
Fecha
2014-03Registro en:
Fallis, L. C.; Fanara, Juan Jose; Morgan, T. J.; Developmental thermal plasticity among Drosophila melanogaster populations; Wiley; Journal Of Evolutionary Biology; 27; 3; 3-2014; 557-564
1010-061X
CONICET Digital
CONICET
Autor
Fallis, L. C.
Fanara, Juan Jose
Morgan, T. J.
Resumen
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill-coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.