dc.creatorSandoval, Mario German
dc.creatorLuna, Roman Jorge
dc.creatorBrizuela, Graciela Petra
dc.creatorPereira, Aline O.
dc.creatorMiranda, C. R.
dc.creatorJasen, Paula Verónica
dc.date.accessioned2018-11-02T21:01:55Z
dc.date.accessioned2018-11-06T15:02:25Z
dc.date.available2018-11-02T21:01:55Z
dc.date.available2018-11-06T15:02:25Z
dc.date.created2018-11-02T21:01:55Z
dc.date.issued2017-04-06
dc.identifierSandoval, Mario German; Luna, Roman Jorge; Brizuela, Graciela Petra; Pereira, Aline O.; Miranda, C. R.; et al.; Theoretical Study of Hydrogen Adsorption on Au@Pd Icosahedral Nanoparticle; American Chemical Society; Journal of Physical Chemistry C; 121; 15; 6-4-2017; 8613-8622
dc.identifier1932-7447
dc.identifierhttp://hdl.handle.net/11336/63572
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1893089
dc.description.abstractFirst-principles calculations based on the density functional theory (DFT) were applied to study the H2 adsorption on Au@Pd NP (core@shell icosahedral bimetallic nanoparticle). The calculations indicate that, for almost all adsorption sites, there is no energy barrier for H2 dissociation at the surface of Au@Pd NP, and the H2 molecule spontaneously dissociates. The only exceptions are the case of atop from edge (AE) and atop from vertex (AV) sites, where there is no dissociation at all. Looking at the adsorption energies, dissociated cases are 1.3 eV more stable than nondissociated cases. The work function (WF) values associated with NP with H2 adsorbed are lower than that obtained in the case of the Pd/Au(111) surface. When H2 is dissociated on the NP or surface, the WF increases, while in the nondissociated case it decreases. We also considered the changes in hydrogen adsorption and dissociation in mixed shell NP structures. The atomic H penetration was also studied for Au@Pd NP. Hydrogen adsorption on both Au@Pd NP and Pd/Au(111) surface systems leads to a slight shift of Pd's d states to lower energies, while the s and p states are almost unaffected. A higher hybridization between Pd and H is detected in the NP case. Each H atom of the H2 molecule adsorbed on the NP becomes negatively charged. It seems that the charge transference occurs toward the NP. The bond order on orbital population analysis indicates no bond for H-H and a decrease in the metal-metal bond while a Pd-H bond is formed. (Figure Presented).
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.7b00286
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.7b00286
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectHYDROGEN
dc.subjectAu@Pd NANOPARTICLES
dc.subjectCATALYSIS
dc.subjectDFT
dc.titleTheoretical Study of Hydrogen Adsorption on Au@Pd Icosahedral Nanoparticle
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución