dc.creatorMassri, Cesar Dario
dc.date.accessioned2017-06-26T15:40:03Z
dc.date.available2017-06-26T15:40:03Z
dc.date.created2017-06-26T15:40:03Z
dc.date.issued2015-04
dc.identifierMassri, Cesar Dario; Solving a sparse system using linear algebra; Elsevier; Journal Of Symbolic Computation; 73; 4-2015; 157-174
dc.identifier0747-7171
dc.identifierhttp://hdl.handle.net/11336/18860
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractWe give a new theoretical tool to solve sparse systems with finitely many solutions. It is based on toric varieties and basic linear algebra; eigenvalues, eigenvectors and coefficient matrices. We adapt Eigenvalue theorem and Eigenvector theorem to work with a canonical rectangular matrix (the first Koszul map) and prove that these new theorems serve to solve overdetermined sparse systems and to count the expected number of solutions.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jsc.2015.06.003
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0747717115000449
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1211.3715
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMultiplication Matrix
dc.subjectEigenvector
dc.subjectSparse System
dc.subjectToric Varieties
dc.titleSolving a sparse system using linear algebra
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución