dc.creator | Kutluer, Kutlu | |
dc.creator | Pascual Winter, María Florencia | |
dc.creator | Dajczgewand, Julian Eduardo | |
dc.creator | Ledingham, Patrick M. | |
dc.creator | Mazzera, Margherita | |
dc.creator | Chanelière, Thierry | |
dc.creator | De Riedmatten, Hugues | |
dc.date.accessioned | 2018-09-19T15:48:22Z | |
dc.date.accessioned | 2018-11-06T14:52:04Z | |
dc.date.available | 2018-09-19T15:48:22Z | |
dc.date.available | 2018-11-06T14:52:04Z | |
dc.date.created | 2018-09-19T15:48:22Z | |
dc.date.issued | 2016-04 | |
dc.identifier | Kutluer, Kutlu; Pascual Winter, María Florencia; Dajczgewand, Julian Eduardo; Ledingham, Patrick M.; Mazzera, Margherita; et al.; Spectral-hole memory for light at the single-photon level; American Physical Society; Physical Review A; 93; 4; 4-2016; 40302-40307 | |
dc.identifier | 2469-9934 | |
dc.identifier | http://hdl.handle.net/11336/60225 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1891205 | |
dc.description.abstract | We demonstrate a solid-state spin-wave optical memory based on stopped light in a spectral hole. A long-lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr3+:Y2SiO5 crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to 39% in a 5-mm-long crystal. We also show that our device works at the single-photon level by storing and retrieving 3-μs-long weak coherent pulses with efficiencies up to 31%, demonstrating the most efficient spin-wave solid-state optical memory at the single-photon level so far. We reach an unconditional noise level of (9±1)×10-3 photons per pulse in a detection window of 4μs, leading to a signal-to-noise ratio of 33±4 for an average input photon number of 1, making our device promising for long-lived storage of nonclassical light. | |
dc.language | eng | |
dc.publisher | American Physical Society | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1103/PhysRevA.93.040302 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.040302 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | quantum memory | |
dc.subject | single photon | |
dc.subject | quantum information | |
dc.subject | spectral hole | |
dc.title | Spectral-hole memory for light at the single-photon level | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |