dc.creatorKutluer, Kutlu
dc.creatorPascual Winter, María Florencia
dc.creatorDajczgewand, Julian Eduardo
dc.creatorLedingham, Patrick M.
dc.creatorMazzera, Margherita
dc.creatorChanelière, Thierry
dc.creatorDe Riedmatten, Hugues
dc.date.accessioned2018-09-19T15:48:22Z
dc.date.accessioned2018-11-06T14:52:04Z
dc.date.available2018-09-19T15:48:22Z
dc.date.available2018-11-06T14:52:04Z
dc.date.created2018-09-19T15:48:22Z
dc.date.issued2016-04
dc.identifierKutluer, Kutlu; Pascual Winter, María Florencia; Dajczgewand, Julian Eduardo; Ledingham, Patrick M.; Mazzera, Margherita; et al.; Spectral-hole memory for light at the single-photon level; American Physical Society; Physical Review A; 93; 4; 4-2016; 40302-40307
dc.identifier2469-9934
dc.identifierhttp://hdl.handle.net/11336/60225
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1891205
dc.description.abstractWe demonstrate a solid-state spin-wave optical memory based on stopped light in a spectral hole. A long-lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr3+:Y2SiO5 crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to 39% in a 5-mm-long crystal. We also show that our device works at the single-photon level by storing and retrieving 3-μs-long weak coherent pulses with efficiencies up to 31%, demonstrating the most efficient spin-wave solid-state optical memory at the single-photon level so far. We reach an unconditional noise level of (9±1)×10-3 photons per pulse in a detection window of 4μs, leading to a signal-to-noise ratio of 33±4 for an average input photon number of 1, making our device promising for long-lived storage of nonclassical light.
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1103/PhysRevA.93.040302
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.040302
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectquantum memory
dc.subjectsingle photon
dc.subjectquantum information
dc.subjectspectral hole
dc.titleSpectral-hole memory for light at the single-photon level
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución