Artículos de revistas
Maximal ideals and representations of twisted forms of algebras
Fecha
2013-07Registro en:
Lau, Michael; Pianzola, Arturo; Maximal ideals and representations of twisted forms of algebras; Mathematical Sciences Publishers; Algebra & Number Theory; 7; 2; 7-2013; 431-448
1937-0652
1944-7833
CONICET Digital
CONICET
Autor
Lau, Michael
Pianzola, Arturo
Resumen
Abstract Given a central simple algebra g g and a Galois extension of base rings S ∕ R S∕R, we show that the maximal ideals of twisted S ∕ R S∕R-forms of the algebra of currents g ( R ) g(R) are in natural bijection with the maximal ideals of R R. When g g is a Lie algebra, we use this to give a complete classification of the finite-dimensional simple modules over twisted forms of g ( R ) g(R).